Statistical Hypothesis Testing in Positive Unlabelled Data
نویسندگان
چکیده
We propose a set of novel methodologies which enable valid statistical hypothesis testing when we have only positive and unlabelled (PU) examples. This type of problem, a special case of semi-supervised data, is common in text mining, bioinformatics, and computer vision. Focusing on a generalised likelihood ratio test, we have 3 key contributions: (1) a proof that assuming all unlabelled examples are negative cases is sufficient for independence testing, but not for power analysis activities; (2) a new methodology that compensates this and enables power analysis, allowing sample size determination for observing an effect with a desired power; and finally, (3) a new capability, supervision determination, which can determine a-priori the number of labelled examples the user must collect before being able to observe a desired statistical effect. Beyond general hypothesis testing, we suggest the tools will additionally be useful for information theoretic feature selection, and Bayesian Network structure learning.
منابع مشابه
TESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE
This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...
متن کاملTesting the weak form of efficient market hypothesis in carbon efficient stock indices along with their benchmark indices in select countries
This paper presents the results of tests on the weak form of Efficient Market Hypothesis applied to carbon efficient stock market indices of India, the United States of America (USA), Japan, and Brazil and their corresponding market indices which are used as their benchmark indices. In this study, Kolmogrov-Smirnov and Shapiro-Wilk tests are used to test the normality of data. Run test and auto...
متن کاملTesting for Stochastic Non- Linearity in the Rational Expectations Permanent Income Hypothesis
The Rational Expectations Permanent Income Hypothesis implies that consumption follows a martingale. However, most empirical tests have rejected the hypothesis. Those empirical tests are based on linear models. If the data generating process is non-linear, conventional tests may not assess some of the randomness properly. As a result, inference based on conventional tests of linear models can b...
متن کاملFalse Discovery Rates
In hypothesis testing, statistical significance is typically based on calculations involving p-values and Type I error rates. A p-value calculated from a single statistical hypothesis test can be used to determine whether there is statistically significant evidence against the null hypothesis. The upper threshold applied to the p-value in making this determination (often 5% in the scientific li...
متن کاملQuality estimation of multiple sequence alignments by Bayesian hypothesis testing
UNLABELLED In this work we present a web-based tool for estimating multiple alignment quality using Bayesian hypothesis testing. The proposed method is very simple, easily implemented and not time consuming with a linear complexity. We evaluated method against a series of different alignments (a set of random and biologically derived alignments) and compared the results with tools based on clas...
متن کامل